

низкой

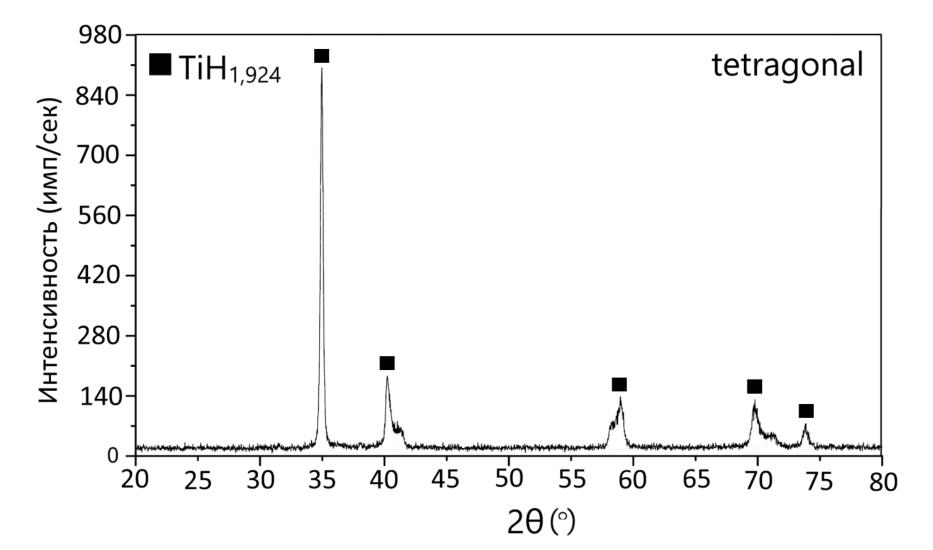
«Физика и технологии перспективных материалов-2021»

ПОЛУЧЕНИЕ ГИДРИДОВ ТИТАНА ДЛЯ ХРАНЕНИЯ ВОДОРОДА МЕТОДОМ СВС

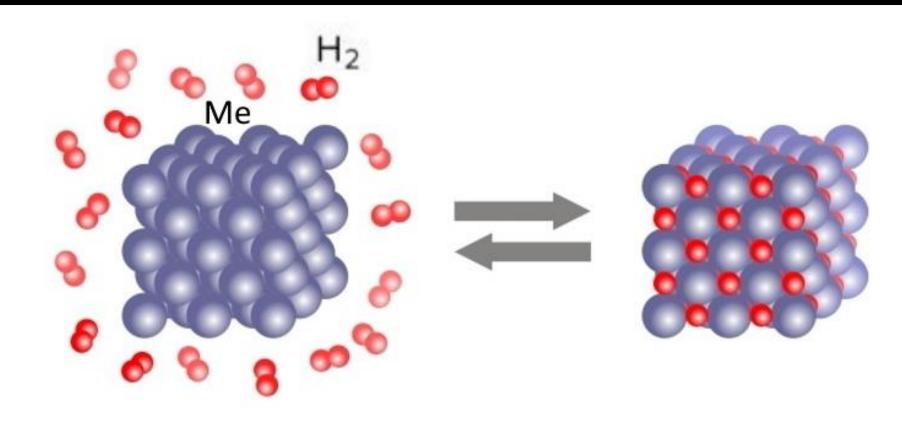
<u>ЧЕРЕЗОВ Н.П., ПЕТРОВ Е. В.</u>

Институт структурной макрокинетики и проблем материаловедения

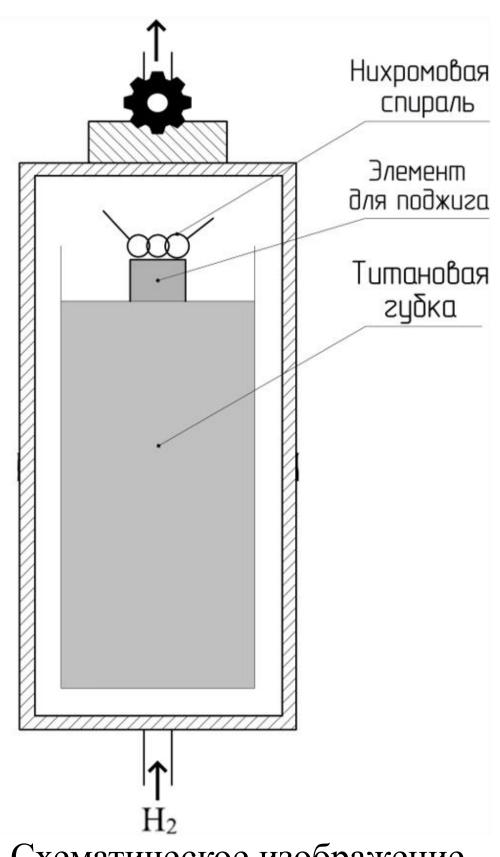
им. А.Г. Мержанова РАН, г. Черноголовка


Электронная почта: cherezovnikita@gmail.com

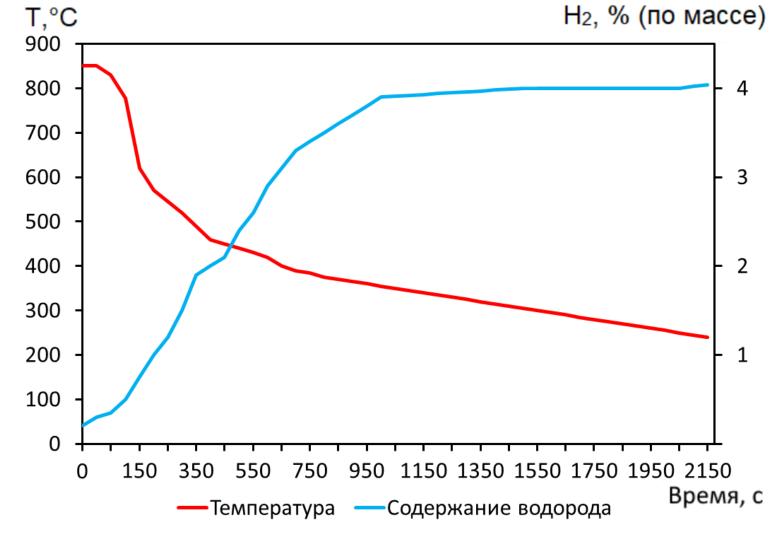
Введение


настоящее время основной проблемой применения водорода в качестве источника энергии является высокая стоимость его перевозки и хранения. Это связано с очень низкой плотностью водорода в газообразном и жидком состоянии. По энергоемкости водород почти в три раза превышает энергоемкость бензина - 120 МДж/кг для водорода 44 МДж/кг для бензина. Однако по по сравнению с объему ситуация обратная; жидкий водород имеет 8 МДж/л, бензин имеет 32 МДж/л. Альтернативой тогда как традиционным методам хранения и транспортировки водорода является его хранение в металлах или интерметаллических соединениях. Содержание водорода в единице объема у многих гидридов выше, чем в единице объема газообразного и

жидкого водорода	·•		
Таблица 1. Расчетные свойства некоторых веществ для			
хранения водорода			
Вещество	ΔH	Массовая доля	Плотность
	(кДж/моль)	водорода (%)	водорода
		_	(Γ/Λ)
Газообразный	_	_	0.084
водород			
Жидкий	_	-	70.9
водород			
LiH	-180	12.7	98
NaH	-112	4.2	58
MgH_2	-74	7.7	109
CaH ₂	-188	4.8	93
AlH_3	-8	10.1	149
TiH ₂	-136	4.0	152
$MnH_{0.5}$	-16	0.9	62
FeH _{0.5}	+20	0.9	59
$PdH_{0.7}$	-41	0.7	72
LaH ₂	-208	1.4	73
UH_3	-127	1.3	137


Как видно из таблицы 1 титан Массовая доля % обладает высокой емкостью водорода O Fe Образец H совокупности с относительно Исходный стоимостью титана, 0,02 0,49 0,13 0,65 0,66 титановый основе соединения на его образец перспективны в качестве материалов Титан после для эффективного хранения водорода. 0,37 0,30 CBC-0,09 0,02 4,64 гидрирования

Рентгенофазовый анализ гидрида титана полученного методом CBC



 $Me + H_2 \leftrightarrow MeH_x + Q$

Схематическое изображение реактора СВС для гидрирования титановой губки

Самораспространяющийся высокотемпературный синтез (СВС) является перспективным методом для для поджига получения гидридов, поскольку получения традиционные методы Титановая гидридов трудоемки, продолжительны и многостадийны. СВС представляет собой режим протекания сильной экзотермической реакции (реакции горения), в которой тепловыделение локализовано в слое и передается от слоя к слою путем теплопередачи. Получение гидридов титана методом СВС осуществляется в реакторе высокого давления (объем 2 л). Титан в виде порошка или губки загружается в реактор, после чего в нем создается давление водорода до 30 МПа, затем осуществляется локальное нагретой инициирование реакции Образование гидрида спиралью. титана условно можно разделить на два этапа: в первом при протекании химической реакции (t = 10-15 мин, T = 700-750 °C) происходит активация поверхности титана и адсорбция водорода, второй этап охлаждение в атмосфере водорода протекает в условиях (t = 1-1,5 ч, T = 300-500 °C) при которых происходит диффузия водорода вглубь частицы и образуется гидрид титана.

Изменение температуры и концентрации водорода в титане в процессе СВС-гидрирования титановой губки