На правах рукописи

UsepSummy

Щербинин Степан Александрович

Делокализованные ангармонические колебания в системах с дискретной симметрией

Специальность 01.04.07 — «Физика конденсированного состояния»

Автореферат диссертации на соискание ученой степени кандидата физико-математических наук Работа выполнена в Федеральном государственном автономном образовательном учреждении высшего образования «Южный федеральный университет».

Научный руководитель:	Чечин Георгий Михайлович , кандидат физико-математических наук, доцент, старший научный сотрудник НИИ физики, Федеральное государственное автономное образовательное учреждение высшего образования «Южный федеральный университет», г. Ростов-на-Дону
Официальные оппоненты:	Старостенков Михаил Дмитриевич, доктор физико-математических наук, профессор, заведующий кафедрой физики, Федеральное государственное бюджетное образовательное учреждение высшего образования «Алтайский государ- ственный технический университет им. И.И. Ползунова», г. Барнаул
	Еникеев Нариман Айратович, доктор физико-математических наук, старший научный сотрудник Института физики перспек- тивных материалов, профессор кафедры «Материаловеде- ние и физика металлов», Федеральное государственное бюджетное образовательное
Ведущая организация:	учреждение высшего ооразования «у фимскии государ- ственный авиационный технический университет», г. Уфа Институт физики молекул и кристаллов – обособленное структурное подразделение Федерального государственно-
	го бюджетного научного учреждения Уфимский федераль- ный исследовательский центр Российской академии наук, г. Уфа

Защита состоится 5 марта 2020 года в 14:00 на заседании диссертационного совета Д 002.080.03 при Федеральном государственном бюджетном учреждении науки «Институт проблем сверхпластичности металлов» Российской академии наук по адресу: 450001, Республика Башкортостан, г. Уфа, ул. Степана Халтурина, 39.

С диссертацией можно ознакомиться в библиотеке и на сайте Института проблем сверхпластичности металлов РАН: http://www.imsp.ru/.

Отзывы на автореферат в двух экземплярах, заверенные печатью учреждения, просьба направлять по адресу: 450001, Республика Башкортостан, г. Уфа, ул. Степана Халтурина, 39, ученому секретарю диссертационного совета Д 002.080.03.

Автореферат разослан _____ 2020 года. Телефон для справок: +7 (347) 223-64-07.

Ученый секретарь диссертационного совета Д 002.080.03, доктор физико-математических наук

Al.Cz

Имаев Марсель Фаниревич

Общая характеристика работы

Современное состояние темы и актуальность работы

Изучение различных видов нелинейных атомных колебаний кристаллов представляет значительный интерес, поскольку они оказывают влияние на свойства соответствующих материалов с кристаллической микроструктурой. Одним из видов таких колебаний являются дискретные бризеры (ДБ) – колебания гамильтоновых решеток, *локализованные* в пространстве и периодические во времени. Эти динамические объекты были *экспериментально* обнаружены в ряде систем различной физической природы (цепочки контактов Джозефсона, периодические электрически цепи, массивы оптических волноводов, массивы механических микрокантилеверов, массивы наноэлектромеханических челноков, конденсаты Бозе-Эйнштейна, антиферромагнитные решетки, гранулированные кристаллы и т.д.).

Колебательные нелинейные нормальные моды (ННМ) и их буши – другой тип нелинейных колебаний, которые, в отличие от ДБ, являются *делокализованными* в пространстве.

Теория бушей ННМ была развита в [1—3]. Каждый буш представляют собой некоторое *точное* решение динамических уравнений гамильтоновой системы с дискретной симметрией, и соответствует определенной подгруппе $G_j \subseteq G_0$ группы симметрии G_0 рассматриваемой системы в состоянии равновесия. Все возможные в данной системе буши мод могут быть найдены с помощью специфических теоретико-групповых методов, *независимо* от конкретного типа межчастичных взаимодействий в системе. Актуальность применения теории бушей мод к колебаниям решеток связана с тем, что степень ангармонизма изучаемых колебаний может иметь произвольную величину.

Каждый буш представляет собой набор из некоторого числа т различных ННМ. Это число называется его размерностью. Если рассматриваемый буш ННМ является устойчивым, то его размерность т остается неизменной, а амплитуды входящих в него мод меняются с течением времени. Энергия начального возбуждения оказывается "запертой" внутри такого динамического объекта. При достаточно больших энергиях рассматриваемый буш может потерять устойчивость и перейти в другой буш более высокой размерности и меньшей симметрии. Возможность существования бушей ННМ как точных динамических режимов обеспечивается некоторыми правилами отбора для передачи возбуждения между модами различной симметрии [1]. Одномерный буш (m = 1) описывает периодическое во времени движение и является нелинейной нормальной модой Розенберга [4], в то время как буши с размерностью m > 1 описывают *квази*периодическое движение с т базисными частотами в соответствующем спектре Фурье. В ряде работ теоретически была показана возможность существования бушей ННМ в различных системах, среди которых отметим цепочки FPU [5; 6], молекулы [7] и графен [8].

Большинство из вышеуказанных работ посвящено теоретико-групповым методам исследования бушей мод, с помощью которых можно найти полный комплект мод, входящих в данный буш, а также установить некоторые *точные* соотношения между амплитудами этих мод. Такое рассмотрение определяет геометрический аспект бушей ННМ. С другой стороны, можно говорить о динамическом аспекте теории бушей мод, поскольку амплитуды входящих в буш мод зависят от времени и для их явного определения необходимо решать некоторые динамические уравнения. Исследование геометрической структуры бушей мод для разнообразных механических систем было проведено в серии работ, в которых рассматривались структурные фазовые переходы в кристаллах с различными пространственными группами [9—11].

Экспериментальное исследование нелинейных колебаний в кристаллах представляет собой весьма нетривиальную задачу и сопряжено с серьезными трудностями. В связи с этим особую значимость приобретают методы компьютерного моделирования. Наиболее распространенный подход к этой проблеме связан с применением методов молекулярной динамики на основе использования феноменологических потенциалов [12] межчастичного взаимодействия. Однако результаты такого моделирования существенным образом зависят от выбора конкретных потенциалов, что может особенно сказаться на результатах исследований высокоамплитудных атомных колебаний, поскольку для подгонки феноменологических параметров, входящих в используемые потенциалы, обычно используются линейные свойства кристаллов (частоты фононных мод, энергия межатомной связи и т.д.).

Альтернативой методам молекулярной динамики являются методы, основанные на применении квантово-механической теории функционала плотности (ТФП) [13]. В рамках этой теории были разработаны эффективные и достаточно точные численные методы расчета многоэлектронных молекулярных и кристаллических структур. Важным отличием таких методов от традиционных методов молекулярной динамики является автоматический учет поляризации электронных оболочек атомов при описании их колебаний, что оказывается существенным при рассмотрении ангармонических колебаний.

Исследованию динамики бушей мод посвящено существенно меньше исследований, нежели исследованию их структуры. Так, в работах [5—7] рассматривались простые модельные системы: цепочки FPU и молекулы, взаимодействие атомов которых описывается потенциалом Леннарда-Джонса. Однако использование в динамическом анализе бушей ННМ в кристаллах более реалистических методов исследования, таких как методы ТФП, до работ автора данной диссертации был развит слабо, что и определяет актуальность тематики настоящей работы.

На одно из возможных применений теории бушей мод было указано в работе [14], где с их помощью были построены локализованные на решетке возбуждения, являющиеся дискретными бризерами. Процедура построения осуществлялась с помощью наложения на ННМ (одномерный буш) некоторой колоколообразной функции, которая приводит к пространственной локализации колебаний. Такая связь между бушами ННМ и ДБ также определяет актуальность задач построения в кристаллах бушей мод и моделирования их динамики с помощью ТФП-расчетов.

Цели настоящей диссертационной работы:

- Используя специфические теоретико-групповые методы [3], разработать компьютерные программы для построения бушей нелинейных нормальных мод в структурах, описываемых пространственными группами симметрии.
- С помощью моделирования на основе теории функционала плотности проверить теоретико-групповые выводы теории бушей мод для молекулярных и кристаллических структур на примере молекулы SF₆, графена (2D структура) и алмаза (3D структура).
- С помощью моделирования на основе теории функционала плотности исследовать динамические свойства бушей нелинейных нормальных мод малой размерности в указанных в предыдущем пункте физических системах.
- Исследовать динамику и устойчивость нелинейных нормальных мод для 1D электрической цепочки, выполненной на кремниевой подложке с помощью CMOS технологии.

Научная новизна

В настоящей диссертационной работе впервые с помощью теоретикогрупповых методов:

- построены все возможные в монослое графена буши нелинейных нормальных мод низкой размерности, соответствующие точкам выделенной симметрии в зоне Бриллюэна;
- построены симметрийно-обусловленные нелинейные нормальные моды в кристалле алмаза;
- доказано, что в модели, описывающей одномерную нелинейную электрическую решётку, существует только 5 симметрийно-обусловленных нелинейных нормальных мод и получены зависимости критических амплитуд этих мод от размера решетки.

Также с помощью компьютерного моделирования на основе теории функционала плотности **впервые** исследована динамика:

- 4. бушей нелинейных нормальных мод в молекуле SF_6 ;
- бушей нелинейных нормальных мод малой размерности в монослое графена;
- 6. одномерных бушей нелинейных нормальных мод в алмазе.

Практическая значимость

Полученные в настоящей диссертационной работе результаты представляют интерес для специалистов в области физики кристаллов и нелинейной динамики систем с дискретной симметрией. Свойства бушей колебательных нелинейных нормальных мод, рассчитанные в данной работе с помощью надежных и достаточно точных методов теории функционала плотности, могут применяться для верификации феноменологических потенциалов, использующихся в молекулярной динамике, а также использоваться для построения дискретных бризеров в кристаллических решетках.

Методы исследования и достоверность результатов

Проведенное в настоящей диссертационной работе построение бушей нелинейных нормальных мод осуществлено с помощью точных теоретикогрупповых методов, развитых в работах [1; 2]. Моделирование динамики бушей мод в молекуле SF_6 и кристаллах графена и алмаза проведено с помощью программных пакетов Quantum Espresso [15] и ABINIT [16], которые являются популярными реализациями методов теории функционала плотности. Достоверность полученных результатов подтверждается надежностью указанных методов и их согласием с литературными данными в тех случаях, когда такое сравнение было возможно провести.

Положения, выносимые на защиту:

- В монослое графена могут существовать нелинейные атомные колебания, описываемые бушами мод малой размерности. Их структура и свойства могут быть найдены с помощью общей теории бушей нелинейных нормальных мод.
- Компьютерное моделирование ангармонических атомных колебаний на основе теории функционала плотности в 2D (графен) и 3D (алмаз) кристаллических структурах подтверждает возможность существования в этих системах бушей (кустов) нелинейных нормальных мод, построенных с помощью теоретико-групповых методов.
- 3. Компьютерное моделирование бушей нелинейных нормальных мод в молекуле SF₆ на основе теории функционала плотности подтверждает справедливость теоретико-групповых правил отбора для передачи возбуждения между нелинейными нормальными модами разной симметрии, входящими в эти буши. При эволюции буша возбуждение может передаваться только от входящих в него колебательных мод более низкой симметрии к модам более высокой симметрии, но не наоборот.
- 4. Для исследования устойчивости периодических колебаний в модели, описывающей одномерную нелинейную электрическую решетку, выполненную на кремниевой подложке с помощью CMOS-технологии, показана эффективность теоретико-группового метода расщепления многомерной вариационной системы на независимые подсистемы малой размерности.

Апробация работы

Основные результаты работы были представлены на следующих научных конференциях:

- 4-th International Conference on nonlinear dyanmics (ND-KhPI2013), 19-22 June 2013, Sevastopol, Ukraine.
- International Workshop "Discrete Breathers in Crystals", 21-25 September 2015, Ufa, Russia.
- V International Symposium on Strong Nonlinear Vibronic and Electronic Interactions in Solids, 1-3 May 2015, Tartu, Estonia.
- International Conference on "Physics and Mechanics of New Materials and Their Applications" (PHENMA 2015), 19-22 May 2015, Azov, Russia.
- International Symposium on Intrinsic Localized Modes: 30th Anniversary of Discovery,25-27 January 2018, Kyoto, Japan.
- VI International Symposium on Strong Nonlinear Vibronic and Electronic Interactions in Solids, 28 April – 1 May 2018, Tartu, Estonia.

Личный вклад

Все численные эксперименты, результаты которых представлены в диссертации, подготовлены и проведены лично автором. Комплекс программ для нахождения картин атомных смещений, соответствующих бушам нелинейных нормальных мод в кристаллических структурах, был реализован лично автором. Постановка задач и анализ полученных результатов проводились совместно с научным руководителем. Основные положения и выводы диссертационной работы сформулированы автором.

Публикации

Основное содержание диссертационной работы изложено в 8 научных публикациях в рецензируемых журналах, включенных в перечень изданий, рекомендованных ВАК РФ, 6 из которых индексируются в системе Scopus.

Содержание работы

Во введении обосновывается актуальность исследований, проведенных в рамках диссертационной работы, формулируются цели представляемой работы, излагается ее научная новизна и практическая значимость.

В первой главе представлен обзор современного состояния исследований по теме диссертационной работы.

Вторая глава посвящена исследованию симметрийно-обусловленных нелинейных нормальных мод Розенберга в LC-цепочке.

В разделе 2.1 описана рассматриваемая модель: одномерная электрическая система (LC-цепочка), предложенная в работе [17]. Эта система, выполненная

на силиконовой подложке с помощью технологии CMOS, представляет собой цепочку нелинейных конденсаторов (емкость которых зависит от напряжений $V_i = V_i(t)$ на обкладках), соединенных линейными индуктивностями (схематическое изображение приведено на рисунке 1). Все емкости и индуктивности полагаются одинаковыми, а граничные условия – периодическими. Изменение напряжений на конденсаторах в такой одномерной решетке, состоящей из N ячеек, описывается следующей системой дифференциальных уравнений второго порядка:

$$\ddot{V}_{j}(1-V_{j}^{2}) - 2V_{j}(\dot{V}_{j})^{2} = V_{j+1} - 2V_{j} + V_{j-1}, j = 1..N,$$

$$V_{0}(t) \equiv V_{N}(t), V_{N+1}(t) \equiv V_{1}(t).$$
(1)

Рисунок 1 — Цепочка из 4-х нелинейных конденсаторов соединенных линейными индуктивностями.

В разделе 2.2 рассматриваются симметрийно-обусловленные нелинейные нормальные моды в LC-цепочке.

Концепция нелинейных нормальных мод (HHM) была предложена Розенбрегом в 1962 году [4]. Каждая HHM описывает режим, в котором колебания всех динамических переменных $x_i(t)$ некоторой механической системы с n степенями свободы пропорциональны одной и той же периодической по времени функции f(t):

$$x_i(t) = c_i f(t), i = 1..n,$$
 (2)

где c_i – некоторые константы. В отличие от линейных нормальных мод, общее количество которых равно числу степеней свободы n механической системы, число ННМ Розенберга от n не зависит и может быть как меньше его, так и больше.

В общем случае, нелинейные нормальные моды Розенберга могут существовать в системах весьма специфических классов. Тем не менее, в системе с произвольным типом межчастичных взаимодействий существование ННМ может быть обеспечено наличием у нее некоторой группы дискретной симметрии [2; 5; 6; 11; 18]. Здесь и далее мы будем называть такие моды симметрийнообусловленными нелинейными нормальными модами или просто ННМ, ибо в диссертационной работе рассматриваются моды лишь этого типа. Для большинства систем с дискретной симметрией обычно существует весьма небольшое число симметрийно-обусловленных ННМ.

Работа [17] посвящена исследованию существования и устойчивости в LCцепочке так называемой π -моды, которая представляет собой HHM следующего вида:

$$\phi_1 = \{ V(t), -V(t) | V(t), -V(t) | \dots | V(t), -V(t) \},$$
(3)

т.е. напряжения на каждой паре соседних конденсаторов в любой момент времени противоположны по знаку.

Помимо π -моды, в LC-цепочке можно возбудить и другие симметрийнообусловленные ННМ. Ввиду того, что группа симметрии модели (1) изоморфна группе симметрии модели FPU- β , все полученные для нее в работе [6] теоретикогрупповые результаты справедливы и для нашего случая. Следовательно, число всех возможных в рассматриваемой электрической системе ННМ равно 5 и вид этих мод следующий [6]:

$$\phi_1 = V(t)\{1, -1|1, -1|1, -1|1, -1|...|1, -1\}$$
 (*π*-мода), (4)

$$\phi_2 = V(t)\{1, 1, -1, -1|1, 1, -1, -1|...|1, 1, -1, -1\},$$
(5)

$$\phi_3 = V(t)\{1, 0, -1, 0|1, 0, -1, 0|...|1, 0, -1, 0\},$$
(6)

$$\phi_4 = V(t)\{1, 0, -1|1, 0, -1|...|1, 0, -1\},$$
(7)

$$\phi_5 = V(t)\{1, 1, 0, -1, -1, 0 | 1, 1, 0, -1, -1, 0 | \dots | 1, 1, 0, -1, -1, 0\}.$$
 (8)

После подстановки выражений (4)-(8) в систему динамических уравнений (1), она сводится к одному уравнению для переменной V(t):

$$\ddot{V}(t)[1 - V^2(t)] - 2V(t)[\dot{V}(t)]^2 + \mu V(t) = 0,$$
(9)

где следующие значения параметра μ соответствуют различным HHM (4)-(8):

$$\phi_1: \mu = 4; \ \phi_2: \mu = 2; \ \phi_3: \mu = 2; \ \phi_4: \mu = 3; \ \phi_5: \mu = 1.$$
 (10)

Уравнение (9) будем называть ведущим. Его решение определяет временную эволюцию всех динамических переменных рассматриваемой системы, колеблющейся в режиме, соответствующем той или иной моде.

В разделе 2.3 описан метод исследования устойчивости нелинейных нормальных мод в LC-цепочке.

Устойчивость π -моды, как и всякого периодического динамического режима, может быть исследована с помощью стандартного метода Флоке. Однако размерность вариационной системы и соответствующей матрицы монодромии равна 2N, что делает исследование линейной устойчивости π -моды крайне затруднительным в случае $N \gg 1$. В работе [19] был развит *общий* теоретикогрупповой метод расщепления вариационной системы на независимые подсистемы значительно меньших размерностей, нежели размерность исходной системы.

В диссертационной работе с помощью этого метода было установлено, что вариационные системы для всех мод $\phi_1, \phi_2, \phi_3, \phi_4, \phi_5$ расщепляются при любом значении N на независимые подсистемы размерности 1, 2, 2, 3, 3, соответственно. Эти подсистемы имеют следующий вид:

$$\hat{A}\ddot{\boldsymbol{\delta}} + \hat{B}\dot{\boldsymbol{\delta}} + \hat{D}\boldsymbol{\delta} = 0, \tag{11}$$

где δ – инфинитезимальный вектор добавок к точному решению динамических уравнений (1), по которым производилась линеаризация системы, а матрицы $\hat{A}, \hat{B}, \hat{D}$ состоят из следующих элементов:

$$c = c(t) = 1 - V^{2},$$

$$f = f(t) = 2(\dot{V}^{2} + V\ddot{V} - 1),$$

$$g = g(t) = -4V\dot{V}.$$
(12)

Здесь V = V(t) – решение ведущего уравнения (9) для соответствующей моды. Конкретный вид матриц для каждой из пяти ННМ следующий.

1) $\phi_1 = V(t)\{1, -1|1, -1|1, -1|...\}.$

В этом случае все подсистемы (11) оказываются одномерными с матрицами:

$$\hat{A} = c(t), \hat{B} = g(t), \hat{D} = f(t) - 2\cos(k),$$
(13)

где $k = \frac{2\pi j}{N}, j = 1, 2, ..., N.$

Для ННМ ϕ_2 и ϕ_3 , подсистемы (11) двумерные: 2) $\phi_2 = V(t)\{1,1,-1,-1|1,1,-1,-1|...\}.$

$$\hat{A} = \begin{pmatrix} c & 0 \\ 0 & c \end{pmatrix}, \hat{B} = \begin{pmatrix} g & 0 \\ 0 & g \end{pmatrix}, \hat{D} = \begin{pmatrix} f & 1+\gamma \\ 1+\bar{\gamma} & f \end{pmatrix}.$$
 (14)

 $3)\phi_3 = V(t)\{1,0,-1,0|1,0,-1,0|...\}.$

$$\hat{A} = \begin{pmatrix} c & 0\\ 0 & 1 \end{pmatrix}, \hat{B} = \begin{pmatrix} g & 0\\ 0 & 0 \end{pmatrix}, \hat{D} = \begin{pmatrix} f & 1+\gamma\\ 1+\bar{\gamma} & -2 \end{pmatrix}.$$
(15)

В уравнениях (14)-(15) $\gamma = e^{\frac{4\pi j}{N}I}$, $j = 1, 2, ..., \frac{N}{2}$, а I - мнимая единица.

4) Для ННМ $\phi_4 = V(t) \{1,0,-1|1,0,-1|...\}$ и

 $\phi_5 = V(t)\{1,1,0,-1,-1,0|1,1,0,-1,-1,0\}$ трехмерные подсистемы (11) оказываются *идентичными*. Эти подсистемы определяются матрицами:

$$\hat{A} = \begin{pmatrix} c & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & c \end{pmatrix}, \hat{B} = \begin{pmatrix} g & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & g \end{pmatrix}, \hat{D} = \begin{pmatrix} f & 1 & \gamma \\ 1 & -2 & 1 \\ \bar{\gamma} & 1 & f \end{pmatrix},$$
(16)

где $\gamma = e^{\frac{6\pi j}{N}I}, j = 1, 2..\frac{N}{3}.$

Таким образом, исследование устойчивости всех ННМ в LC-цепочке (1) сводится к анализу устойчивости *нулевых решений* набора одно-, двух- и трехмерных систем линейных дифференциальных уравнений с периодическими по времени коэффициентами, определяемыми функцией V(t).

В разделах 2.4-2.9 проведен анализ устойчивости нелинейных нормальных мод в LC-цепочке. Коэффициенты систем (11) являются периодическими во времени и определяются решением ведущего уравнения (9) с начальными условиями

$$V(0) = A, \dot{V}(0) = 0.$$
⁽¹⁷⁾

Таким образом, A представляет собой амплитуду колебаний напряжения на обкладках конденсаторов.

Рассмотрим набор расщепленных систем (11) для некоторой фиксированной ННМ. Потеря устойчивости нулевых решений разных подсистем из набора (11) происходит при различных значениях критической амплитуды напряжения V(0) = A. Обозначим такую амплитуду для системы под номером j как A_c^j . Тогда критическая амплитуда A_c , при которой теряет устойчивость колебательный режим, соответствующий данной ННМ, будет определяться наименьшим значением из набора всех A_c^j .

Для мод ϕ_1 и ϕ_2 в пределе больших значений N нам удалось получить аналитическое выражение для A_c^j . Для ϕ_1 оно имеет вид:

$$A_{c}^{j} = \frac{2}{\sqrt{3}} tg(\frac{\pi j}{N}), \ j = 1, 2, \dots, N,$$
(18)

а для ϕ_2 :

$$A_c^j(N) = \frac{2}{\sqrt{3}} \sqrt{\frac{\sin(\frac{2\pi}{N}j)}{1 - \sin(\frac{2\pi}{N}j)}}, \ j = 1, 2, \dots, \frac{N}{2}.$$
 (19)

Из выражений (18)-(19) можно получить следующий асимптотический закон зависимости критических амплитуд A_c рассматриваемых мод от числа N ячеек в цепочке:

$$A_c(N) = CN^{-\beta},\tag{20}$$

где для моды
 $\phi_1:\ \beta=-1$ и $C\approx 3.629,$ а для моды
 $\phi_2:\ \beta=-\frac{1}{2}$ и $C\approx 2.89.$

Для мод ϕ_3 , ϕ_4 и ϕ_5 аналитическое рассмотрение провести не удалось, но численно было получено, что асимптотический закон (20) справедлив и для этих мод. Результаты численных расчетов, проведенных для мод ϕ_1 и ϕ_2 , совпали с результатами теоретического анализа. Ниже приведены рассчитанные численно коэффициенты β и C для всех пяти мод:

$$\begin{aligned}
\phi_1 : & \beta_1 = 0.99, C_1 = 3.62; \\
\phi_2 : & \beta_2 = 0.49, C_2 = 2.89; \\
\phi_3 : & \beta_3 = 0.99, C_3 = 8.57; \\
\phi_4, \phi_5 : & \beta_4 = 0.99, C_4 = 7.54.
\end{aligned}$$
(21)

Графики функции (20), соответствующие этим значениям констан
т $(\beta,C),$ приведены на рисунке 2

Рисунок 2 — Устойчивость нелинейных нормальных мод (4)-(8) в LC-цепочках при разных N. Сплошная линия соответствует моде ϕ_2 , пунктирная – моде ϕ_3 , штриховая - π -моде ϕ_1 , штрих-пунктирная – модам ϕ_4 и ϕ_5

Таким образом, была исследована устойчивость всех 5 возможных симметрийно-обусловленных нелинейных нормальных мод в модели, описывающей одномерную нелинейную электрическую решетку.

В третьей главе исследуются взаимодействия нелинейных нормальных мод в молекуле *SF*₆ в рамках теории функционала плотности.

В разделе 3.1 дано понятие о бушах нелинейных нормальных мод.

Линейные нормальные моды (ЛНМ) представляют собой точные решения для гамильтоновых систем в гармоническом приближении. Они перестают быть таковыми, если мы принимаем во внимание ангармонические слагаемые в гамильтониане. Если таковые слагаемые малы, то можно говорить о взаимодействиях между ЛНМ и строить на их основе некоторые *приближенные* решения. Но существуют ли точные решения в гамильтоновых системах за пределами гармонического приближения? На этот вопрос дает ответ теория бушей нелинейных нормальных мод [1; 2].

Рассмотрим элементы теории бушей мод на примере молекулы SF_6 , имеющей структуру октаэдра (рисунок 3), в центре которого находится атом серы, а в вершинах – атомы фтора. При описании любого колебательного режима в этой системе можно говорить о конфигурационном векторе $\mathbf{X}(t)$, определяющем смещения всех атомов из положений равновесия в любой фиксированный момент времени t. Для каждой нелинейной нормальной моды (HHM), так же как и для ЛНМ, этот вектор обладает определенной группой точечной симметрии.

Согласно теореме Вигнера [20], линейные моды классифицируются по неприводимым представлениям (НП) группы симметрии G_0 равновесного состояния системы. Тогда можно ввести базис $\Phi = \{\phi_j | j = 1,...,N\}$ (N – число степеней свободы) в пространстве всех возможных атомных смещений, определяемый полным набором базисных векторов неприводимых представлений, входящих в механическое представление рассматриваемой системы. Таким образом, конфигурационный вектор $\mathbf{X}(t) = \{x_1(t), x_2(t), ..., x_N(t)\}$, соответствующий

Рисунок 3 — Модель октаэдрической молекулы.

произвольному динамическому режиму в этой системе, может быть разложен по указанному базису с зависящими от времени коэффициентами:

$$\mathbf{X}(t) = \sum_{j=1}^{N} c_j(t) \boldsymbol{\phi}_j.$$
(22)

В этом выражении каждое слагаемое $c_j(t)\phi_j$ может трактоваться как ННМ согласно определению (2): векторный множитель ϕ_j определяет вектор смещений всех атомов, т.е. пространственную структуру ННМ, тогда как $c_j(t)$ определяют временную эволюцию моды. Однако, для краткости, мы часто используем термин ННМ (или колебательная мода) отдельно как для ϕ_j , так и для $c_j(t)$.

Поскольку базисные векторы ϕ_j соответствуют различным НП Γ_n группы G_0 , конфигурационный вектор X(t) в выражении (22) может быть записан в виде суммы вкладов, соответствующих отдельным неприводимым представлениям группы симметрии равновесного состояния системы:

$$\mathbf{X}(t) = \sum_{n} (\mathbf{C}_{n}(t), \boldsymbol{\Phi}[\boldsymbol{\Gamma}_{n}]), \qquad (23)$$

где $\Phi[\Gamma_n]$) – набор базисных векторов неприводимого представления Γ_n .

Малые, т.е. линейные, колебания молекулы, соответствующие различным неприводимым представлениям Γ_n , независимы друг от друга. В случае же нелинейных колебаний (с большими амплитудами), вообще говоря, происходит передача возбуждения между модами. В работе [1] было установлено, что существуют определенные правила отбора для передачи возбуждения от одной моды к другой, следующие из соответствующих теоретико-групповых ограничений. В частности, возбуждение от моды с данной группой симметрии *G* может передаться только тем ННМ, симметрия которых выше или равна *G*. Указанные правила отбора ведут к возможности существования *бушей мод*, каждый из которых представляет собой набор ННМ, сохраняющийся в течении временной эволюции буша: энергия начального возбуждения оказывается локализованной внутри этого динамического объекта.

Каждый буш обладает своей собственной симметрией, которая определяется *пересечением* всех групп симметрии его мод. Обсуждая *динамические* аспекты теории бушей, мы исследуем временную эволюцию нелинейных мод, входящих в данный буш и соответствующих разным неприводимым представлениям группы G_0 .

Раздел 3.2 посвящен теоретико-групповому анализу нелинейных колебаний в молекуле *SF*₆.

Теоретико-групповой анализ нелинейных колебаний структуры, представленной на рисунке 3, был выполнен в [7], где были найдены все возможные в данной структуре буши нелинейных нормальных мод. Рассмотрим ННМ ϕ_1, ϕ_2, ϕ_3 , соответствующие одномерному НП Γ_1 , двумерному НП Γ_5 и трехмерному НП Γ_{10} . Картины смещений атомов, соответствующие этим модам приведены в Таблице 1, где для каждого атома фтора, в соответствии с нумерацией на рисунке 3, указаны координаты x, y, z, которые определяют смещения атомов из их положений равновесия.

ΗΠ	HHM	Картина смещений
Γ_1	ϕ_1	$\frac{1}{\sqrt{6}}(0,0,-1 -1,0,0 0,-1,0 1,0,0 0,1,0 0,0,1)$
Γ_5	$oldsymbol{\phi}_2$	$\frac{1}{\sqrt{12}}(0,0,2 -1,0,0 0,-1,0 1,0,0 0,1,0 0,0,-2)$
Γ ₁₀	ϕ_3	$\frac{1}{\sqrt{12}}(0,0,-2 0,0,1 0,0,1 0,0,1 0,0,1 0,0,-2)$

Таблица 1 — Картины атомных смещений для ННМ в молекуле SF₆.

Мода ϕ_1 представляет собой одномерный буш $B[O_h]$, так как обладает симметрией O_h , которая выше, чем у любой другой колебательной моды, и, таким образом, возбуждение от этой моды не может передаваться другим модам. Здесь и далее мы обозначаем соответствующий буш как $B[G_n]$, где G_n – группа симметрии этого буша.

Иначе обстоит дело с модой ϕ_2 , симметрия которой описывается точечной группой симметрии $G_2 = D_{4h}$. Данная мода не может существовать независимо от всех других мод: ее возбуждение приводит к возбуждению ("вытягиванию") моды ϕ_1 , группа симметрии которой $G_1 = O_h$ выше, чем группа симметрии $G_2 = D_{4h}$. Это утверждение представляет собой результат исключительно теоретико-группового анализа. Таким образом, возбуждение моды ϕ_2 приводит к возникновению в системе двумерного буша $B[D_{4h}]$ с точечной группой симметрии $G_2 = D_{4h}$.

Мода же ϕ_3 , будучи возбуждена в начальный момент времени $t = t_0$, вытягивает две моды, ϕ_2 и ϕ_1 , порождая трехмерный буш $B[C_{4v}]$, полная симметрия которого совпадает с группой симметрии $G_3 = C_{4v}$ моды ϕ_3 .

Моды, симметрия которых определяет симметрию всего буша, называются "корневыми", другие же моды, которые автоматически возбуждаются при возбуждении корневой моды, принято называть "вторичными".

В разделах 3.3-3.4 обсуждаются результаты моделирования бушей нелинейных нормальных мод в молекуле SF_6 на основе теории функционала плотности.

В диссертационной работе была проведена верификация теории бушей мод с помощью моделирования на основе теории функционала плотности (ТФП) [13]. Такое моделирование представляется достаточно адекватным способом описания реальных физических систем и обычно позволяет, например, рассчитать атомную структуру материалов с точностью до 1%.

В данной главе диссертационной работы для моделирования динамики молекулы SF_6 на основе теории функционала плотности был использован программный пакет ABINIT [16], в котором применяются: приближение Борна-Оппенгеймера для разделения движения тяжелых ядер и легких электронов, приближение локальной плотности (LDA) и метод псевдопотенциалов.

На рисунке 4 можно видеть пример динамики одномерного буша $B[O_h]$. Было установлено, что никакие другие колебательные моды при этом не возбуждаются. Из рисунка видно, что колебания носят нелинейный характер.

Рисунок 4 — Пример динамики буша $B[O_h]$.

На рисунке 5 представлена зависимость частоты данного буша от его амплитуды, которая демонстрирует *мягкий* тип нелинейности.

На рисунке 6 представлен пример динамики двумерного буша $B[D_{4h}]$. Из этого рисунка видно, что вторичная мода ϕ_1 , будучи нулевой в начальный момент времени, постепенно вовлекается в колебательный процесс. При этом никакие другие моды не возбуждаются.

На рисунке 7 приведен пример динамики трехмерного буша B[C4v]. Было установлено, что только две вторичные моды (ϕ_2 и ϕ_1) вовлекаются в данный колебательный режим, а все остальные моды остаются в "спящем" состоянии.

Таким образом, с помощью моделирования на основе теории функционала плотности было доказана на конкретном примере молекулы SF_6 справедливость

Рисунок 6 — Пример динамики двумерного буша $B[D_{4h}]$.

выводов общей теории бушей мод при описании взаимодействия между нелинейными колебательными модами разной симметрии.

В четвертой главе исследуются буши нелинейных нормальных мод в графене.

В Разделе 4.1 представлены результаты теоретико-группового анализа нелинейных делокализованных колебаний в монослое графена (пространственная группа симметрии $G_0 = P6mm$).

Как уже говорилось, каждый m-мерный буш $B_j(t)$ представляет собой сохраняющийся во времени набор из m взаимодействующих друг с другом нелинейных нормальных мод:

$$B_{j}(t) = \sum_{k=1}^{m} c_{jk}(t)\psi_{k}.$$
(24)

Здесь $\psi_k - N$ -мерные вектора, N – число степеней свободы в ячейке повторяемости кристалла в *колебательном* состоянии, которую мы называем расширенной элементарной ячейкой (РЕЯ). Такая ячейка больше примитивной ячейки кристалла в некоторое целое число раз s. Векторы ψ_k представляют собой базисные векторы различных неприводимых представлений группы симметрии G_0 рассматриваемой системы (для монослоя графена $G_0 = P6mm$). Каждый вектор ψ_k определяет конкретную картину атомных смещений со своей собственной группой симметрии $G_k \subseteq G_0$.

Как уже отмечалось, математический аппарат теории бушей базируется на использовании неприводимых представлений (НП) группы симметрии G_0 системы в равновесном состоянии. Все динамические режимы данной физической системы можно классифицировать по подгруппам G_j группы G_0 ($G_i \subseteq G_0$).

Группа симметрии любого динамического режима G_j определяется симметрией картины его атомных смещений δ_j :

$$\hat{G}_j \boldsymbol{\delta}_j = \boldsymbol{\delta}_j. \tag{25}$$

Для любого устойчивого движения группа G_j сохраняется в течение временной эволюции.

Картина атомных смещений δ_j может быть записана как сумма вкладов от различных НП группы G_0 :

$$\boldsymbol{\delta}_j = \sum_i \boldsymbol{\delta}(\Gamma_i). \tag{26}$$

В рамках теории бушей было доказано, что из уравнения (26) можно получить следующие инвариантные отношения для индивидуального НП Γ_i :

$$(\Gamma_i \downarrow G_j)c_i = c_i \tag{27}$$

для всех Γ_i группы G_i . Здесь ($\Gamma_i \downarrow G_i$) есть ограничение НП Γ_i группы G_0 на ее подгруппе G_j. Вектор, удовлетворяющий условию (27), называется инвариантным вектором НП Г_i. В общем случае, инвариантный вектор данного НП зависит от набора произвольных параметров. Построение бушей ННМ начинается с нахождения всех неэквивалентных инвариантных векторов каждого неприводимого представления. Затем фиксируется некоторое НП Γ_i и один из его инвариантных векторов c_i , а затем просматриваем все НП группы G_0 для нахождения тех, которым может соответствовать вторичная мода буша (каждый буш определяется парой Γ_i и \mathbf{c}_i). Для каждого ограничения ($\Gamma_i \downarrow G_i$) находится инвариантный вектор из решения системы линейных алгебраических уравнений (27). В результате можно найти "полный конденсат параметров порядка", который определяет набор произвольных коэффициентов, входящих в определяющую данный динамический режим линейную комбинацию базисных векторов $H\Pi \Gamma_i$. В случае колебательных бушей эти базисные векторы должны быть построены в пространстве всех атомных смещений. Эта процедура была описана в [3]. Она позволяет определить явную форму картин атомных смещений δ_j , инвариантных по отношению к выбранной группе $G_i \subseteq G_0$.

С помощью описанных методов в диссертационной работе были найдены все возможные в графене буши мод, соответствующие точкам выделенной симметрии зоны Бриллюэна. В частности, было установлено, что в монослое графена могут существовать только 4 одномерных, 12 двумерных, 1 трехмерный и 6 четырехмерных колебательных бушей.

На рисунке 8 изображены картины атомных смещений для нелинейных мод $\psi_1 - \psi_4$. Все стрелки на каждом из рисунке 8 одинаковы по длине, но различны по направлениями. Они определяют смещения атомов из их равновесных положений. Моды $\psi_1 - \psi_4$ представляют собой одномерные буши $B_1(t)$ - $B_4(t)$:

Рисунок 8 — Картины атомных смещений для мод $\psi_1 - \psi_4$. Для каждой моды указана соответствующая ей группа симметрии.

будучи возбужденными в начальный момент времени, эти моды существуют, не приводя к возбуждению никаких других мод.

На рисунке 9 приведены картины атомных смещений мод $\psi_5 - \psi_7$. Эти моды являются *корневыми* модами двумерных бушей $B_5(t) - B_7(t)$, т.е. каждая из этих мод, будучи возбуждена в начальный момент времени, приводит к возбуждению еще одной, вторичной, моды. Для этих трех бушей вторичная мода *одна и та же*: ψ_4 .

В разделе 4.2 представлены результаты моделирования динамики бушей колебательных мод в графене, проведенного с помощью программного пакета Quantum Espresso [15] с использованием тех же приближений, что и в предыдущей главе.

В качестве примера рассмотрим динамику одномерного буша $B_3(t)$ с пространственной группой симметрии $G_3 = P6mm$. Разложение (24), соответствующее этому бушу, сводится к одному слагаемому $c_{31}(t)\psi_3$. Тогда временная эволюция смещений атомов решетки графена описывается одной и той же периодической во времени функцией $c_{31}(t)$. Более того, как уже отмечалось, *каждый* одномерный буш описывает однопараметрический периодический динамический режим. На рисунке 10 приведены колебания одного атома углерода графена для буша $B_3(t)$, т.к. та же самая временная эволюция соответствует и всем другим атомам. На рисунке 11 представлены зависимости частоты нелинейных атомных колебаний графена от их амплитуды для всех четырех ННМ. Зависимости для бушей $B_1(t)$ и $B_2(t)$ демонстрируют мягкий тип нелинейности, а для бушей $B_3(t)$ и $B_4(t) - жесткий$ тип нелинейности.

Рисунок 10 — Колебания одного атома углерода, соответствующие бушу $B_3(t)$.

Также было проведено моделирование динамики двумерных бушей $B_5(t) - B_7(t)$, результаты которого приведены на рисунке 12. В начальный момент

времени возбуждалась только корневая мода соответствующего буша. Из рисунков видно, что вторичная мода, ψ_4 , будучи нулевой в начальный момент времени, вовлекается в колебательный процесс в течение временной эволюции буша, причем степень такого "вытягивания" оказывается различной для разных бушей. Было установлено, что никакие другие моды при этом не возбуждаются.

Рисунок 12 — Динамика двумерных бушей: (а) $B_5(t)$, (б) $B_6(t)$, (в) $B_7(t)$. Корневой моде соответствует сплошная линия, а вторичной - пунктирная.

В пятой главе исследуются нелинейные нормальные моды в алмазе.

В разделе 5.1 представлены теоретико-групповые результаты анализа нелинейных делокализованных колебаний в алмазе.

Структура алмаза в состоянии равновесия обладает пространственной группой симметрии, которая в международных обозначениях записывается как $Fd\bar{3}m$, а в обозначениях Шенфлиса – O_h^7 . Симметрия (G_j) колебательного состояния в общем случае ниже, чем симметрия ($G_0 = Fd\bar{3}m$) кристалла в положении равновесия. С использованием теоретико-групповых методов [3] в диссертационной работе для структуры алмаза были найдены две нелинейные нормальные моды, симметрии которых определяются пространственными группами $R\bar{3}m$ (мода 1) и $P4_132$ (мода 2) (в обозначениях Шенфлиса D_{3d}^5 и O^7 , соответственно), которые являются подгруппами группы $Fd\bar{3}m$.

На рисунках 13 и 14 представлены трехмерные картины атомных смещений, соответствующие моде 1 и моде 2, как набор плоских двумерных сечений, перпендикулярных оси Z. Смещения атомов углерода в плоскости XY отмечены стрелками, в то время как z-смещения обозначены кругами с точками (направление вдоль оси Z) и кругами с крестами (направление против оси Z). Величины смещений вдоль X-, Y-, и Z-направлений *равны между собой*.

В **разделе 5.2** приведены результаты моделирования динамики нелинейных нормальных мод в алмазе, проведенного с помощью программного пакета Quantum Espresso [15] с использованием тех же приближений, что и в предыдущей главе.

Картины атомных смещений нелинейных нормальных мод 1 и 2 были проверены посредством расчетов на основе теории функционала плотности, проведенных с помощью пакета Quantum Espresso [15] с использованием тех же приближений, что и в предыдущих главах.

Рисунок 13 — Трехмерная картина атомных смещений, соответствующая моде 1, как набор плоских двумерных сечений, перпендикулярных оси *Z*.

Рисунок 14 — Трехмерная картина атомных смещений, соответствующая моде 2, как набор плоских двумерных сечений, перпендикулярных оси *Z*.

На рисунке 15 представлены колебания одного из атомов углерода решетки алмаза для моды 1 при двух значениях ее амплитуды. Колебания всех остальных атомов кристалла будут точно такими же.

Рисунок 15 — Атомные колебания, соответствующие ННМ 1 для двух амплитуд: (a) 0.1 Å и (б) 0.2 Å.

На рисунке 16а можно видеть зависимость частоты моды 1 от ее амплитуды. Эта зависимость демонстрирует мягкий тип нелинейности. На рисунке 16б приведена зависимость частоты моды 2 от ее амплитуды. Эта зависимость также демонстрирует мягкий тип нелинейности.

Таким образом, было показано сохранение с течением временной эволюции картин атомных смещений найденых двух ННМ в алмазе и установлены некоторые динамические свойства этих мод.

Рисунок 16 — Зависимость частоты от амплитуды для (а) моды 1 и (б) моды 2. <u>В заключении</u> формулируются основные результаты и выводы:

- Для монослоя графена, описываемого пространственной группой симметрии P6mm, найдены низкоразмерные буши нелинейных нормальных мод и построены соответствующие им картины атомных смещений. В частности, было установлено, что в монослое графена могут существовать одномерных бушей только 4, двумерных – 12, трехмерных – 1, четырехмерных – 6.
- С помощью компьютерного моделирования на основе теории функционала плотности для одномерных бушей в монослое графена рассчитаны зависимости частот от их амплитуды и проверено «вытягивание» вторичных мод корневой модой.
- Для решетки алмаза, описываемой пространственной группой симметрии O⁷_h, найдены симметрийно-обусловленные нелинейные нормальные моды и построены соответствующие им картины атомных смещений.
- С помощью компьютерного моделирования на основе теории функционала плотности для нелинейных нормальных мод в алмазе смоделирована их динамика и рассчитаны зависимости их частот от амплитуды.
- 5. С помощью компьютерного моделирования на основе теории функционала плотности исследована динамика бушей нелинейных нормальных мод в октаэдрической молекуле SF_6 . Построена зависимость частоты нормальной моды симметрии O_h от ее амплитуды. Проверено «вытягивание» вторичных мод корневой модой.
- 6. Доказано, что в модели, описывающей одномерную нелинейную электрическую решетку, существует только 5 симметрийно-обусловленных нелинейных нормальных мод. С помощью теоретико-группового метода расщепления многомерной вариационной системы на независимые подсистемы малой размерности получены зависимости критических амплитуд всех 5 мод от размера решетки и определены скейлинги этих зависимостей в термодинамическом пределе.

Список литературы

- 1. Сахненко, В. П. Симметрийные правила отбора в нелинейной динамике атомных систем / В. П. Сахненко, Г. М. Чечин // Доклады Академии Наук. — 1993. — Т. 330. — С. 308—310.
- Chechin, G. M. Interactions between normal modes in nonlinear dynamical systems with discrete symmetry. Exact results / G. M. Chechin, V. P. Sakhnenko // Physica D. 1998. Vol. 117, no. 1–4. P. 43–76.
- 3. *Chechin*, *G*. Computers and group-theoretical methods for studying structural phase transitions / G. Chechin // Computers and Mathematics with Applications. 1989. Vol. 17. P. 255-278.
- Rosenberg, R. M. The Normal Modes of Nonlinear n-Degree-of-Freedom Systems / R. M. Rosenberg // Journal of Applied Mechanics. 1962. Vol. 29, no. 1. P. 7—14.
- Chechin, G. M. Bushes of vibrational modes for Fermi-Pasta-Ulam chains / G. M. Chechin, N. V. Novikova, A. A. Abramenko // Physica D. – 2002. – Vol. 166, no. 3/4. – P. 208.
- Chechin, G. M. Stability of low-dimensional bushes of vibrational modes in the Fermi-Pasta-Ulam chains / G. M. Chechin, D. S. Ryabov, K. G. Zhukov // Physica D. - 2005. - Vol. 203, no. 3. - P. 121.
- Chechin, G. M. Existence and stability of bushes of vibrational modes for octahedral mechanical systems with Lennard-Jones potential / G. M. Chechin, A. V. Gnezdilov, M. Y. Zekhtser // International Journal of Non-Linear Mechanics. – 2003. – Vol. 38, no. 10. – P. 1451.
- Chechin, G. Nonlinear vibrational modes in graphene: group-theoretical results / G. Chechin, D. Ryabov, S. Shcherbinin // Letters on Materials. — 2016. — Vol. 6, no. 1. — P. 9—15.
- Chechin, G. Complete order parameter condensate of low-symmetry phases upon structural phase transitions / G. Chechin, T. Ivanova, V. Sakhnenko // Physica Status Solidi(b). – 1989. – Vol. 152, no. 2. – P. 431.
- Chechin, G. Peculiarities of the low-symmetry phase structure near the phasetransition point / G. Chechin, E. Ipatova, V. Sakhnenko // Acta Crystallographica Section A. – 1993. – Vol. 49, no. 6. – P. 824–831.
- Chechin, G. M. Nonlinear normal modes for systems with discrete symmetry / G. M. Chechin, V. P. Sakhnenko, H. T. Stokes, A. D. Smith, D. M. Hatch // International Journal of Non-Linear Mechanics. — 2000. — Vol. 35, no. 3. — P. 497.
- Холмуродов, Х. Методы молекулярной динамики для моделирования физических и биологических процессов / Х. Холмуродов, М. Алтайский, И. Пузынин, Т. Дардин, Ф. Филатов // Физика Элементарных Частиц и Атомного Ядра. 2003. Т. 34. С. 472—515.

- Kohn, W. Nobel Lecture: Electronic structure of matter—wave functions and density functionals / W. Kohn // Reviews of modern physics. — 1999. — Vol. 71, no. 5. — P. 1253—1266.
- Barani, E. Transverse discrete breathers in unstrained graphene / E. Barani, I. Lobzenko, E. Korznikova, E. Soboleva, S. Dmitriev, K. Zhou, A. M. Marjaneh // European Physical Journal B. – 2017. – Vol. 90, no. 38.
- 15. https://www.quantum-espresso.org/.
- 16. https://www.abinit.org/.
- 17. *Bhat*, *H. S.* The zone boundary mode in periodic nonlinear electrical lattices / H. S. Bhat, B. Osting // Physica D. 2009. Vol. 238, no. 14. P. 1228.
- 18. *Rink*, *B*. Symmetry and resonance in periodic FPU chains / B. Rink // Physica D. 2001. Vol. 218, no. 3. P. 665-685.
- 19. *Chechin, G. M.* Stability analysis of dynamical regimes in nonlinear systems with discrete symmetries / G. M. Chechin, K. G. Zhukov // Physical Review E. 2006. Vol. 73, 3 pt.2. P. 362.
- 20. *Wigner*, *E*. Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra, expanded and improved edition / E. Wigner. New York : Academic Press, 1959.

Список публикаций автора по теме диссертации:

- Исследование устойчивости нелинейных нормальных мод в электрических цепях / Чечин Г.М., Гончаров П.П., Щербинин С.А.// Известия ВУЗов. Прикладная нелинейная динамика.– 2013.– Т. 21. No 2.
- Delocalized periodic vibrations in nonlinear LC and LCR electrical chains / Chechin G., Shcherbinin S. // Communications in nonlinear science and numerical simulations.- 2014.- Vol. 22. No 1-3.
- Nonlinear normal mode interactions in the SF₆ molecule studied with the aid of density functional theory / Chechin G., Ryabov D., Shcherbinin S. // Physical Review E.- 2015.– Vol. 92.
- Nonlinear vibrational modes in graphene: group-theoretical results / Chechin G., Ryabov D., Shcherbinin S. // Letters on Materials – 2016.– Vol. 6. No. 1.
- Large-amplitude in-plane atomic vibrations in strained graphene monolayer: bushes of nonlinear normal modes / Chechin G., Ryabov D., Shcherbinin S. // Letters on Materials – 2017.– Vol. 7. No. 4.
- Об устойчивости одномерных бушей нелинейных колебательных мод в графене / Баимова Ю.А., Щербинин С.А., Чечин Г.М.: Дмитриев С.В. // Физика и механика материалов – 2017.– Т. 33., No. 1.
- Large-amplitude periodic atomic vibrations in diamond / Chechin G., Ryabov D., Shcherbinin S. // Journal of Micromechanics and Molecular Physics – 2018.– Vol. 03, No. 01-02.
- Delocalized Nonlinear Vibrational Modes in Graphene: Second Harmonic Generation and Negative Pressure / Korznikova E., Shcherbinin S., Ryabov D., Chechin G., Ekomasov E., Barani E., Zhou K., Dmitriev S. // Physica Status Solidi (B) – 2019 – Vol. 256.