# ИССЛЕДОВАНИЕ ФАЗОВОГО СОСТАВА НАНОСИСТЕМЫ FePt

А.Н. Попова, Н.С. Захаров, Ю.А. Захаров, В.М. Пугачев

Федеральный исследовательский центр угля и углехимии СО РАН, Кемерово h991@ya.ru

#### Аннотация

Рассмотрено получение наноразмерных систем (HC) FePt методом восстановления металлов растворов прекурсоров (N2H4·H2O — восстановитель). Впервые методами рентгеновской дифрактометрии и ДСК в сочетании с термогравиметрией и масс-спектроскопией газообразных продуктов изучена последовательность изменения фазового состава в НС Fe—Pt с разным соотношением компонентов и на основе этих данных предложена схема (модель) формирования рентгенографически чистой фазы L10, вероятно, общая для систем типа Fe(Co,Ni)—Pt, синтезированных предложенным методом.

#### Цель

Разработка простых способов получения свободной от оксидных примесей системы Fe-Pt в нанокристаллическом состоянии и рассмотрение условий формирования в ней интерметаллидов.

### Исследуемые образцы системы FePt:

 $1 - \text{Fe}_{24}\text{Pt}_{76}$ ;  $2 - \text{Fe}_{48}\text{Pt}_{52}$ ;  $3 - \text{Fe}_{70}\text{Pt}_{30}$ 



URL: http://www.crct.polymtl.ca/fact/documentation/FSstel/FSstel\_Figs.htm

## ДСК-кривые для образов Fe48Pt52 и Fe24Pt76



#### Методы исследования

- фазовый состав и структура НПС методами дифракции рентгеновских лучей (Bruker D8 ADVANCE A25);
- фазовые трансформации НПС в циклах нагревание— охлаждение (in-situ) ( «Anton Paar» HTK 1200N);
- массовые (объемные) функции распределения частиц по размерам Dm(d) (дифрактометр КРМ-1, «на просвет»);
- дериватомасс-спектрометрия (ДМС) в сочетании с термогравиметрией (ТГ) и наблюдениями тепловых эффектов (ДСК) (NETSCH STA 409 PC/PG);
- элементный анализ образцов методом оптикоэмиссионной спектрометрии с индуктивно связанной плазмой выполнен на спектрометре iCAP 6500 DUO

### Результаты РФА образцов наночастиц FePt

| Образец                           | a, Å   | <b>V</b> <sub>ат</sub> , Å <sup>3</sup> | С <sub>Рt</sub> ,<br>мол. доля | С <sub>Fe</sub> ,<br>мол. доля | Размер<br>ОКР, нм |
|-----------------------------------|--------|-----------------------------------------|--------------------------------|--------------------------------|-------------------|
| Fe <sub>70</sub> Pt <sub>30</sub> | 3.8865 | 14.675                                  | 0.827                          | 0.173                          | 6.3               |
| Fe <sub>48</sub> Pt <sub>52</sub> | 3.9000 | 14.829                                  | 0.888                          | 0.112                          | 7.8               |
| Fe <sub>24</sub> Pt <sub>76</sub> | 3.8985 | 14.813                                  | 0.881                          | 0.119                          | 9.4               |
| Pt, PDF                           | 3.9231 | 15.095                                  | 1.000                          |                                | _                 |

### <u>Результаты элементного анализа образцов FePt</u>

| Образец                           | Fe опр., мг | Рt опр., | Pt опр., мол. | Fe опр., мол. |
|-----------------------------------|-------------|----------|---------------|---------------|
|                                   |             | MΓ       | дол.          | дол.          |
| Fe <sub>70</sub> Pt <sub>30</sub> | 4.99        | 6.46     | 0.27          | 0.73          |
| Fe <sub>48</sub> Pt <sub>52</sub> | 2.815       | 8.52     | 0.46          | 0.54          |
| Fe <sub>24</sub> Pt <sub>76</sub> | 1.168       | 10.54    | 0.72          | 0.28          |



Дифрактограммы образцов наночастиц FePt: (a) – образец Fe $_{24}$ Pt $_{76}$ , (b) – образец Fe $_{48}$ Pt $_{52}$ , (b) – образец Fe $_{70}$ Pt $_{30}$ 

#### Заключение

Синтезированы наночастицы FePt методом совместного восстановления водных растворов прекурсоров. Размеры ОКР наночастиц составили в среднем 8.1 нм. Обнаружено, что в независимости от закладываемого состава при синтезе, образуется твёрдый раствор с концентрацией железа в близи 10 ат. %. Элементный анализ частиц выявил незначительное отклонение закладываемого состава от определяемого, что не согласуется с данными, полученными дифракционным методом. Показано, что во всех образцах присутствует дифракционноневидимая фаза.

Исследование выполнено при финансовой поддержке РФФИ и Кемеровской области в рамках научного проекта № 20-43-420014 с использованием оборудования КемЦКП ФИЦ УУХ СО РАН