ИССЛЕДОВАНИЕ ФАЗОВОГО СОСТАВА НАНОСИСТЕМЫ FePt <u>А.Н. Попова</u>, Н.С. Захаров, Ю.А. Захаров, В.М. Пугачев Федеральный исследовательский центр угля и углехимии СО РАН, Кемерово <u>h991@ya.ru</u>

<u>Аннотация</u>

Рассмотрено получение наноразмерных систем (HC) FePt методом восстановления металлов растворов прекурсоров (N2H4·H2O — восстановитель). Впервые методами рентгеновской дифрактометрии и ДСК в сочетании с термогравиметрией и масс-спектроскопией газообразных продуктов изучена последовательность изменения фазового состава в HC Fe—Pt с разным соотношением компонентов и на основе этих данных предложена схема (модель) формирования рентгенографически чистой фазы L10, вероятно, общая для систем типа Fe(Co,Ni)—Pt, синтезированных предложенным методом.

Методы исследования

- фазовый состав и структура НПС методами дифракции рентгеновских лучей (Bruker D8 ADVANCE A25);
- фазовые трансформации НПС в циклах нагревание охлаждение (in-situ) («Anton Paar» HTK 1200N);
- массовые (объемные) функции распределения частиц по размерам Dm(d) (дифрактометр КРМ-1, «на просвет»);
- -дериватомасс-спектрометрия (ДМС) в сочетании с

Цель

Разработка простых способов получения свободной от оксидных примесей системы Fe-Pt в нанокристаллическом состоянии и рассмотрение условий формирования в ней интерметаллидов.

<u>Исследуемые образцы системы FePt:</u>

$$1 - Fe_{24}Pt_{76}$$
; $2 - Fe_{48}Pt_{52}$; $3 - Fe_{70}Pt_{30}$

- термогравиметрией (ТГ) и наблюдениями тепловых эффектов (ДСК) (NETSCH STA 409 PC/PG);
- элементный анализ образцов методом оптикоэмиссионной спектрометрии с индуктивно связанной плазмой выполнен на спектрометре iCAP 6500 DUO

<u>Результаты РФА образцов наночастиц FePt</u>

Образец	a, Å	V _{ат} , Å ³	C _{Pt} ,	C _{Fe} ,	Размер
			мол. доля	мол. доля	ОКР, нм
Fe ₇₀ Pt ₃₀	3.8865	14.675	0.827	0.173	6.3
Fe ₄₈ Pt ₅₂	3.9000	14.829	0.888	0.112	7.8
Fe ₂₄ Pt ₇₆	3.8985	14.813	0.881	0.119	9.4
Pt, PDF	3.9231	15.095	1.000		_

<u>Результаты элементного анализа образцов FePt</u>

URL: http://www.crct.polymtl.ca/fact/documentation/FSstel/FSstel_Figs.htm

<u>ДСК-кривые для образов Fe48Pt52 и Fe24Pt76</u>

Образец	Fe опр., мг	Рt опр.,	Рt опр., мол.	Fe опр., мол.
		ΜΓ	дол.	дол.
Fe ₇₀ Pt ₃₀	4.99	6.46	0.27	0.73
Fe ₄₈ Pt ₅₂	2.815	8.52	0.46	0.54
Fe ₂₄ Pt ₇₆	1.168	10.54	0.72	0.28

Дифрактограммы образцов наночастиц FePt:

$(a) - образец Fe_{24}Pt_{76}, (b) - образец Fe_{48}Pt_{52}, (b) - образец Fe_{70}Pt_{30}$

Заключение

Синтезированы наночастицы FePt методом совместного восстановления водных растворов прекурсоров. Размеры ОКР наночастиц составили в среднем 8.1 нм. Обнаружено, что в независимости от закладываемого состава при синтезе, образуется твёрдый раствор с концентрацией железа в близи 10 ат. %. Элементный анализ частиц выявил незначительное отклонение закладываемого состава от определяемого, что не согласуется с данными, полученными дифракционным методом. Показано, что во всех образцах присутствует дифракционноневидимая фаза.

Исследование выполнено при финансовой поддержке РФФИ и Кемеровской области в рамках научного проекта № 20-43-420014 с использованием оборудования КемЦКП ФИЦ УУХ СО РАН